Public

e PeckShield

SMART CONTRACT AUDIT REPORT

for

UXLINK ERC20 MultiSender

Prepared By: Xiaomi Huang

PeckShield
September 27, 2025

1/16 PeckShield Audit Report #: 2025-161

contact@peckshield.com

Public

Document Properties

Client UXLINK

Title Smart Contract Audit Report

Target UXLINK ERC20 MultiSender

Version 1.0

Author Xuxian Jiang

Auditors Matthew Jiang, Xuxian Jiang

FEVIENWEGHOA Xiaomi Huang

AVSI oA Xuxian Jiang

Classification B

Version Info

Version Date Author(s)
1.0 September 27, 2025 | Xuxian Jiang

Description
Final Release

1.0-rc September 26, 2025 | Xuxian Jiang

Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Xiaomi Huang

+86 183 5897 7782

contact@peckshield.com

2/16

PeckShield Audit Report #: 2025-161

Public

Contents
1 Introduction 4
1.1 About ERC20 MultiSender 4
1.2 About PeckShield 5
1.3 Methodology 5
1.4 Disclaimer 7
2 Findings 9
2.1 Summary . ..o 9
22 Key Findings 10
3 Detailed Results 11
3.1 Accommodation of Non-ERC20-Compliant Tokens 11
3.2 Improved Gas Efficiency in Batch Transfers 13
4 Conclusion 15
References 16

3/16 PeckShield Audit Report #: 2025-161

Public

1 Introduction

Given the opportunity to review the design document and related source code of the ERC20 MultiSender
contract, we outline in the report our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contracts can be further improved due to the presence

of several issues related to either security or performance. This document outlines our audit results.

1.1 About ERC20 MultiSender

ERC20 MultiSender, alternatively called a multi-transfer or bulk sender, is a smart contract or tool
that allows to send ERc20 tokens to many addresses in a single transaction, instead of sending tokens

one by one. The basic information of audited contracts is as follows:

Table 1.1; Basic Information of UXLINK ERC20 MultiSender

Item Description

Name | UXLINK
Type | Smart Contract
Language | Solidity
Audit Method | Whitebox
Latest Audit Report | September 27, 2025

In the following, we show the deployment address of the audited contract.

e https://sepolia.etherscan.io/address/0xc45B7f627feF5979760aECF10bC73065dD250FF8

And this is the new deployment address after all fixes for the issues found in the audit have been

checked in:

e https://sepolia.etherscan.io/address/0x7D10deDe472f482dE67227e3f83DBf574F5F9347

4/16 PeckShield Audit Report #: 2025-161

Public

1.2 About PeckShield

PeckShield Inc. [5] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

High Medium
§ Medium Medium
E

Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [4]:

e Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

e Impact measures the technical loss and business damage of a successful attack;

e Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact, and can be accordingly classified
into four categories, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further

deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would

5/16 PeckShield Audit Report #: 2025-161

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category

Basic Coding Bugs

Check Item |
Constructor Mismatch

Ownership Takeover

Redundant Fallback Function

Overflows & Underflows

Reentrancy

Money-Giving Bug

Blackhole

Unauthorized Self-Destruct

Revert DoS

Unchecked External Call

Gasless Send

Send Instead Of Transfer

Costly Loop

(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables

Transaction Ordering Dependence

Deprecated Uses

Semantic Consistency Checks

Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review

Functionality Checks

Authentication Management

Access Control & Authorization

Oracle Security

Digital Asset Escrow

Kill-Switch Mechanism

Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling

Frontend-Contract Integration

Deployment Consistency

Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array

Using Fixed Compiler Version

Making Visibility Level Explicit

Making Type Inference Explicit

Adhering To Function Declaration Strictly

Following Other Best Practices

6/16

PeckShield Audit Report #: 2025-161

Public

additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

e Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static

code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues

found by our tool.

e Semantic Consistency Checks: We then manually check the logic of implemented smart con-

tracts and compare with the description in the white paper.

e Advanced DeFi Scrutiny: We further review business logics, examine system operations, and

place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

e Additional Recommendations: We also provide additional suggestions regarding the coding and

development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [3], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with

respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit

should not be used as investment advice.

7/16 PeckShield Audit Report #: 2025-161

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category

Configuration

Summary

Weaknesses in this category are typically introduced during

the configuration of the software.

Data Processing Issues

Weaknesses in this category are typically found in functional-
ity that processes data.

Numeric Errors

Weaknesses in this category are related to improper calcula-
tion or conversion of numbers.

Security Features

Weaknesses in this category are concerned with topics like
authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State

Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management

Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues

Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics

Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup

Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters

Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues

Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices

Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/16

PeckShield Audit Report #: 2025-161

Public

2 Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the ERC20 MultiSender smart
contract. During the first phase of our audit, we study the smart contract source code and run our
in-house static code analyzer through the codebase. The purpose here is to statically identify known
coding bugs, and then manually verify (reject or confirm) issues reported by our tool. We further
manually review business logics, examine system operations, and place DeFi-related aspects under

scrutiny to uncover possible pitfalls and/or bugs.

Severity ‘ # of Findings
Critical
High
Medium

Low

Informational
Total

N —RIHRIOlO|O

We have so far identified a list of potential issues: some of them involve subtle corner cases that
might not be previously thought of. For each uncovered issue, we have therefore developed test
cases for reasoning, reproduction, and/or verification. After further analysis and internal discussion,
we determined a few issues of varying severities need to be brought up and paid more attention to,
which are categorized in the above table. More information can be found in the next subsection, and

the detailed discussions of each of them are in Section 3.

9/16 PeckShield Audit Report #: 2025-161

Public

2.2 Key Findings

Overall, this smart contract is well-designed and engineered, though the implementation can be im-
proved by resolving the identified issues (shown in Table 2.1), including 1 low-severity vulnerability

and 1 informational issue.

Table 2.1: Key Audit Findings in UXLINK ERC20 MultiSender

) Severity Title - Category Status
PVE-001 Low Accommodation of Non-ERC20-Compliant | Coding Practice | Resolved
Tokens

PVE-002 | Informational | Improved Gas Efficiency in Batch Transfers | Coding Practice | Resolved

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contract is being deployed on mainnet. Please refer to Section 3

for details.

10/16 PeckShield Audit Report #: 2025-161

64
65
66
67
68
69
70
71
72

74

Public

3 Detailed Results

3.1 Accommodation of Non-ERC20-Compliant Tokens

e |ID: PVE-001 e Target: UXLINKERC20MultiSender
e Severity: Low e Category: Coding Practice [2]

o Likelihood: Low e CWE subcategory: CWE-563 [1]
e Impact: Low

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow
the specification or have additional functionalities beyond the specification. In the following, we
examine the transfer() routine and related idiosyncrasies from current widely-used token contracts.
In particular, we use the popular token, i.e., zrRx, as our example. We show the related code
snippet below. On its entry of transfer(), there is a check, i.e., if (balances[msg.sender] >= _value
&% balances[_to] + _value >= balances[_tol). If the check fails, it returns false. However, the
transaction still proceeds successfully without being reverted. This is not compliant with the ERC20
standard and may cause issues if not handled properly. Specifically, the ERC20 standard specifies the
following: “Transfers value amount of tokens to address to, and MUST fire the Transfer event.
The function SHOULD throw if the message caller’s account balance does not have enough tokens
to spend.”

function transfer(address to, uint _value) returns (bool) {
//Default assumes totalSupply can’t be over max (27256 - 1).

if (balances[msg.sender] >= value && balances[to] + value >= balances|[to]) {
balances [msg.sender] — value;
balances|[to] += _value;
Transfer(msg.sender, to, _value);

return true;
} else { return false; }

by

function transferFrom (address from, address to, uint _value) returns (bool) {

11/16 PeckShield Audit Report #: 2025-161

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

75

76
7
78
79
80
81
82

121

122
123
124
125
126
127
128
129
130
131

Public

if (balances|[from] >= value && allowed[from][msg.sender] >= value &&
balances|[to] + _value >= balances|[to]) {
balances[to] += _value;
balances|[from] —= _value;
allowed [from][msg.sender] —= _value;
Transfer(_from, to, value);

return true;
} else { return false; }

Listing 3.1: ZRX.sol

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
O, In essence, it is a wrapper around ERC20 operations that may either throw on failure or return false
without reverts. Moreover, the safe version also supports tokens that return no value (and instead
revert or throw on failure). Note that non-reverting calls are assumed to be successful. Similarly,
there is a safe version of approve()/transferFrom() as well, i.e., safeApprove()/safeTransferFrom().

In the following, we show the batch_transfer() routine in the UXLINKERC20MultiSender contract. If
the UsDT token is supported as token, the unsafe version of token.transferFrom(msg.sender, address(
this), fee) (lines 127 and 129) may revert as there is no return value in the UsDT token contract's
transfer () /transferFrom() implementation (but the IERC20 interface expects a return value)!

function batch_transfer (address _token, address[] memory to, uint256 amount) public

{

IERC20 token = IERC20(_token);

uint256 fee = calculateWithdrawalFee (amount) ;
uint256 amountAfterFee = amount - fee;

for (uint256 i = 0; i < to.length; i++) {
if (fee > 0) {
token.transferFrom(msg.sender, address(this), fee);

}

token.transferFrom(msg.sender, to[i], amountAfterFee);

Listing 3.2: UXLINKERC20MultiSender: :batch_transfer ()

Recommendation =~ Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve () /transfer () /transferFrom(). Note another function batch_transfer_diffent_amount () shares

the same issue.

Status This issue has been resolved by following the above suggestion.

12/16 PeckShield Audit Report #: 2025-161

121

122
123
124
125
126
127
128
129
130
131

121

122
123
124
125
126
127
128

Public

3.2 Improved Gas Efficiency in Batch Transfers

e |ID: PVE-002 e Target: UXLINKERC20MultiSender
e Severity: Informational e Category: Coding Practice [2]

o Likelihood: N/A e CWE subcategory: CWE-563 [1]
e Impact: N/A

Description

The bulk-sending feature of the audited multi-sender contract is convenient and gas-friendly when
compared to the need of sending separate transactions for each recipient. While reviewing the current
implementation, we notice an opportunity to further reduce gas cost.

In the following, we show the implementation of a related function batch_transfer (). By design,
the batch transfer feature allows to charge certain withdrawal fee. Our analysis shows that the
withdraw fee is collected from the calling user to the contract itself multiple times (line 127), not
once. As a result, we can revise it by calculating the total withdraw fee and collecting the fee once.

function batch_transfer (address _token, address[] memory to, uint256 amount) public

{

IERC20 token = IERC20(_token);

uint256 fee = calculateWithdrawalFee (amount) ;
uint256 amountAfterFee = amount - fee;

for (uint256 i = 0; i < to.length; i++) {
if (fee > 0) {
token.transferFrom(msg.sender, address(this), fee);

}

token.transferFrom(msg.sender, to[i], amountAfterFee);

Listing 3.3: UXLINKERC20MultiSender: :batch_transfer ()

Recommendation Revise the above logic to efficiently collect withdraw fee. Note the same
suggestion is also applicable to the batch_transfer_diffent_amount () routine. Their revisions are show
below:

function batch_transfer (address _token, address[] memory to, uint256 amount) public

{

IERC20 token = IERC20(_token);

uint256 fee = calculateWithdrawalFee (amount) ;
uint256 amountAfterFee = amount - fee;

for (uint256 i = 0; i < to.length; i++) {
token.transferFrom(msg.sender, to[i], amountAfterFee);

13/16 PeckShield Audit Report #: 2025-161

129
130
131
132
133

133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

Public

if (fee > 0) {

token.transferFrom(msg.sender, address(this), fee * to.length);

Listing 3.4: Revised UXLINKERC20MultiSender: :batch_transfer()

function batch_transfer_diffent_amount (address _token, address[] memory to, uint[]

memory amount) public {
IERC20 token = IERC20(_token);
require(to.length == amount.length, "address.len must equal amount.len ");

uint256 total_fee;
for (uint256 i = 0; i < to.length; i++) {
uint256 fee = calculateWithdrawalFee (amount[i]);

uint256 amountAfterFee = amount[i] - fee;

total_fee += fee;

token.safeTransferFrom(msg.sender, to[i], amountAfterFee);

if (total_fee > 0) {
token.safeTransferFrom(msg.sender, address(this), total_fee);

Listing 3.5: Revised UXLINKERC20MultiSender: :batch_transfer_diffent_amount ()

Status This issue has been resolved by following the above suggestion.

14/16

PeckShield Audit Report #: 2025-161

Public

4 Conclusion

In this audit, we have analyzed the design and implementation of the ERC20 MultiSender contract,
which is used to batch transfer ERc20 tokens to multiple recipient addresses in a single transaction,
instead of sending tokens one by one. The current code base is well structured and neatly organized.
Those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in

scope/coverage.

15/16 PeckShield Audit Report #: 2025-161

Public

References

[1] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/
definitions/563.html.

[2] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/
1006.html.

[3] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[4] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP _Risk Rating

Methodology.

[5] PeckShield. PeckShield Inc. https://www.peckshield.com.

16/16 PeckShield Audit Report #: 2025-161

https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About ERC20 MultiSender
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Accommodation of Non-ERC20-Compliant Tokens
	Improved Gas Efficiency in Batch Transfers

	Conclusion
	References

