
Public

SMART CONTRACT AUDIT REPORT

for

UXLINK Reward Pool

Prepared By: Xiaomi Huang

PeckShield
November 8, 2024

1/18 PeckShield Audit Report #: 2024-259

contact@peckshield.com

Public

Document Properties

Client UXLINK
Title Smart Contract Audit Report
Target UXLINK Reward Pool
Version 1.0
Author Xuxian Jiang
Auditors Daisy Cao, Xuxian Jiang
Reviewed by Xuxian Jiang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 November 8, 2024 Xuxian Jiang Final Release
1.0-rc November 8, 2024 Xuxian Jiang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/18 PeckShield Audit Report #: 2024-259

Public

Contents

1 Introduction 4
1.1 About UXLINK Reward Pool . 4
1.2 About PeckShield . 6
1.3 Methodology . 6
1.4 Disclaimer . 8

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Possible Blocked Withdrawal Under Insufficient Surplus 12
3.2 Accommodation of Non-ERC20-Compliant Tokens 13
3.3 Trust Issue of Admin Keys . 15

4 Conclusion 17

References 18

3/18 PeckShield Audit Report #: 2024-259

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the UXLINK Reward

Pool smart contract, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About UXLINK Reward Pool

UXLINK aims to be the largest Web3 social platform and infrastructure for users and developers to
discover, distribute, and trade crypto assets in unique social and group-based manner. This specific
audit focuses on its staking contract to reward staking users. The basic information of the audited
contract is as follows:

Table 1.1: Basic Information of The UXLINK Reward Pool Contract

Item Description
Name UXLINK Reward Pool
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report November 8, 2024

In the following, we show the deployment address of the audited contract.

• https://sepolia.arbiscan.io/address/0x14462F5501fFF2842Af14c2721596De3Ba4f502e

And here are the new deployment addresses of the audited contract after all fixes have been
checked in:

4/18 PeckShield Audit Report #: 2024-259

Public

• https://sepolia.arbiscan.io/address/0x5720266683F564cfe682a3Cb88ac289c327EFc4b

• https://arbiscan.io/address/0x5720266683F564cfe682a3Cb88ac289c327EFc4b

5/18 PeckShield Audit Report #: 2024-259

Public

1.2 About PeckShield

PeckShield Inc. [7] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [6]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would

6/18 PeckShield Audit Report #: 2024-259

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/18 PeckShield Audit Report #: 2024-259

Public

additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [5], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

8/18 PeckShield Audit Report #: 2024-259

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

9/18 PeckShield Audit Report #: 2024-259

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the UXLINK Reward Pool implementation. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 0

Informational 1

Total 3

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

10/18 PeckShield Audit Report #: 2024-259

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity
vulnerabilities and 1 informational recommendation.

Table 2.1: Key UXLINK Reward Pool Audit Findings

ID Severity Title Category Status
PVE-001 Medium Possible Blocked Withdrawal Under Insuf-

ficient Surplus
Coding Practice Resolved

PVE-002 Informational Accommodation of Non-ERC20-
Compliant Tokens

Business Logic Resolved

PVE-003 Medium Trust Issue of Admin Keys Security Features Mitigated

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

11/18 PeckShield Audit Report #: 2024-259

Public

3 | Detailed Results

3.1 Possible Blocked Withdrawal Under Insufficient Surplus

• ID: PVE-001

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: UXLINKTokenRewardPoolMultiple

• Category: Business Logic [4]

• CWE subcategory: CWE-841 [2]

Description

The UXLINKTokenRewardPoolMultiple contract supports standard staking features and allows users to
stake and unstake their funds. While reviewing current unstaking logic, we notice an issue that may
result in unstaking failure.

To elaborate, we show below the implementation of the related withdraw() routine as well as
the associated checkNextEpoch modifier. We notice the associated modifier has a requirement, i.e.,
require(poolSurplusReward >= nextCycleReward) (line 177), which may revert the withdraw operation
if current surplus reward is not able to support the next cycle reward. This revert unfortunately
blocks users funds from being withdrawn.

312 function withdraw(
313 uint256 amount ,
314 uint256 positionID
315) external updateReward(msg.sender) checkNextEpoch nonReentrant {
316 require(
317 withdrawOpened ,
318 "Have not opened"
319);
320 require(
321 amount > MIN_WITHDRAW_AMOUNT ,
322 "Withdraw amount must be greater than MIN_WITHDRAW_AMOUNT"
323);
324 ...
325 }

Listing 3.1: UXLINKTokenRewardPoolMultiple::withdraw()

12/18 PeckShield Audit Report #: 2024-259

Public

173 modifier checkNextEpoch () {
174 if (block.timestamp >= periodFinish) {
175 curCycleReward = nextCycleReward;
176 require(
177 poolSurplusReward >= nextCycleReward ,
178 "poolSurplusReward is not enough"
179);
180 poolSurplusReward = poolSurplusReward - nextCycleReward;
181 curCycleStartTime = block.timestamp;
182 periodFinish = block.timestamp + (nextDuration);
183 cycleTimes ++;
184 lastUpdateTime = curCycleStartTime;
185 rewardRate = curCycleReward / (nextDuration);
186 totalReward = totalReward + (curCycleReward);
187 emit StartNewEpoch(curCycleReward , nextDuration);
188 }
189 _;
190 }

Listing 3.2: UXLINKTokenRewardPoolMultiple::checkNextEpoch()

Recommendation Properly revise the above routines to ensure the user staked funds can be
reliably withdrawn in all cases.

Status The issue has been resolved by following the above suggestion.

3.2 Accommodation of Non-ERC20-Compliant Tokens

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple Contracts

• Category: Business Logic [4]

• CWE subcategory: CWE-841 [2]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow
the specification or have additional functionalities beyond the specification. In the following, we
examine the transfer() routine and related idiosyncrasies from current widely-used token contracts.

In particular, we use the popular token, i.e., ZRX, as our example. We show the related code
snippet below. On its entry of transfer(), there is a check, i.e., if (balances[msg.sender] >= _value

&& balances[_to] + _value >= balances[_to]). If the check fails, it returns false. However, the
transaction still proceeds successfully without being reverted. This is not compliant with the ERC20
standard and may cause issues if not handled properly. Specifically, the ERC20 standard specifies the

13/18 PeckShield Audit Report #: 2024-259

Public

following: “Transfers _value amount of tokens to address _to, and MUST fire the Transfer event.
The function SHOULD throw if the message caller’s account balance does not have enough tokens
to spend.”

64 f unc t i on t r a n s f e r (address _to , u in t _value) r e tu rn s (bool) {
65 // Default assumes totalSupply can’t be over max (2^256 - 1).
66 i f (b a l a n c e s [msg . sender] >= _value && ba l a n c e s [_to] + _value >= ba l a n c e s [_to]) {
67 ba l a n c e s [msg . sender] −= _value ;
68 ba l a n c e s [_to] += _value ;
69 Transfer (msg . sender , _to , _value) ;
70 re tu rn t rue ;
71 } e l s e { re tu rn f a l s e ; }
72 }

74 f unc t i on t r a n s f e rF r om (address _from , address _to , u in t _value) r e tu rn s (bool) {
75 i f (b a l a n c e s [_from] >= _value && a l l owed [_from] [msg . sender] >= _value &&

ba l a n c e s [_to] + _value >= ba l a n c e s [_to]) {
76 ba l a n c e s [_to] += _value ;
77 ba l a n c e s [_from] −= _value ;
78 a l l owed [_from] [msg . sender] −= _value ;
79 Transfer (_from , _to , _value) ;
80 re tu rn t rue ;
81 } e l s e { re tu rn f a l s e ; }
82 }

Listing 3.3: ZRX::transfer()/transferFrom()

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return false
without reverts. Moreover, the safe version also supports tokens that return no value (and instead
revert or throw on failure). Note that non-reverting calls are assumed to be successful. Similarly,
there is a safe version of approve()/transferFrom() as well, i.e., safeApprove()/safeTransferFrom().

In the following, we show the safeTokenTransfer() routine in the UXLINKTokenRewardPoolMultiple

contract. If the USDT token is supported as rewardToken, the unsafe version of IERC20(rewardToken

).transfer(_to, tokenBalance) (line 442) may revert as there is no return value in the USDT token
contract’s transferFrom() implementation (but the IERC20 interface expects a return value)!

438 function safeTokenTransfer(address _to , uint256 _amount) internal {
439 require(rewardToken != address (0x0), "No harvest began");
440 uint256 tokenBalance = IERC20(rewardToken).balanceOf(address(this));
441 if (_amount > tokenBalance) {
442 IERC20(rewardToken).transfer(_to , tokenBalance);
443 } else {
444 IERC20(rewardToken).transfer(_to , _amount);
445 }
446 }

Listing 3.4: UXLINKTokenRewardPoolMultiple::safeTokenTransfer()

14/18 PeckShield Audit Report #: 2024-259

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

Public

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom().

Status This issue has been resolved by following the above suggestion.

3.3 Trust Issue of Admin Keys

• ID: PVE-003

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: UXLINKTokenRewardPoolMultiple

• Category: Security Features [3]

• CWE subcategory: CWE-287 [1]

Description

In the UXLINKTokenRewardPoolMultiple contract, there is a privileged account, i.e., manager, which plays
a critical role in governing and regulating the staking-wide operations (e.g., parameter setting and
reward token adjustment). It also has the privilege to affect the flow of assets managed by this
protocol. Our analysis shows that the privileged account needs to be scrutinized. In the following,
we examine the privileged account and their related privileged accesses in current contracts.

125 function notifyMintAmount(uint256 addNextReward) external onlyManager {
126 uint256 balanceBefore = IERC20(rewardToken).balanceOf(address(this));
127 IERC20(rewardToken).safeTransferFrom(
128 msg.sender ,
129 address(this),
130 addNextReward
131);
132 uint256 balanceEnd = IERC20(rewardToken).balanceOf(address(this));
133
134 poolSurplusReward = poolSurplusReward + (balanceEnd - balanceBefore);
135 emit AddNextCycleReward(poolSurplusReward);
136 }
137
138 function setNextCycleReward(
139 uint256 _nextCycleReward ,
140 uint256 _nextDuration
141) external onlyManager {
142 nextCycleReward = _nextCycleReward;
143 nextDuration = _nextDuration;
144 emit SetRewardConfig(nextCycleReward , nextDuration);
145 }
146
147 function setStakeTimeRatio(
148 uint256 [] memory _stakeTimeRatio
149) external onlyManager {
150 require(_stakeTimeRatio.length <=36, "stakeTimeRatio length is invalid!");

15/18 PeckShield Audit Report #: 2024-259

Public

151 stakeTimeRatio = _stakeTimeRatio;
152 emit SetStakeTimeRatio(_stakeTimeRatio);
153 }
154
155 function setPunishRate(uint256 _punishRate) external onlyManager {
156 punishRate = _punishRate;
157 emit SetPunishRate(_punishRate);
158 }
159
160 function setWithdrawOpened(bool _opened) external onlyManager {
161 withdrawOpened = _opened;
162 }

Listing 3.5: Example Privileged Operations in the UXLINKTokenRewardPoolMultiple Contract

If the privileged admins are managed by a plain EOA account, this may be worrisome and pose
counter-party risk to the exchange users. A multi-sig account could greatly alleviate this concern,
though it is still far from perfect. Specifically, a better approach is to eliminate the administration key
concern by transferring the role to a community-governed DAO. In the meantime, a timelock-based
mechanism can also be considered as mitigation.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been mitigated with a multi-sig account to take the role of the manager.

16/18 PeckShield Audit Report #: 2024-259

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the staking reward contract in
UXLINK, which aims to be the largest Web3 social platform and infrastructure for users and developers
to discover, distribute, and trade crypto assets in unique social and group-based manner. This audit
focuses on the staking contract to reward staking users. During the audit, we notice that the current
code base is well organized and those identified issues are promptly confirmed and fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

17/18 PeckShield Audit Report #: 2024-259

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[3] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[4] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[5] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[6] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[7] PeckShield. PeckShield Inc. https://www.peckshield.com.

18/18 PeckShield Audit Report #: 2024-259

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About UXLINK Reward Pool
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Possible Blocked Withdrawal Under Insufficient Surplus
	Accommodation of Non-ERC20-Compliant Tokens
	Trust Issue of Admin Keys

	Conclusion
	References

